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Appendix 
The general expression for the flow behavior of 

solutions is /3 = f(r), where /3 = rate of shear, and 
f(r) is some function of the shear stress T. The 
problem of viscometry is the determination of the 
form of this function from experimental measure
ments. In the case of Newtonian fluids, the func
tion becomes T/TJ, where 17 is the viscosity. 

For a concentric cylinder viscometer 

where co is the angular velocity at a distance r from 
the axis of rotation. Integration of this equation 
between the limits of r\ and r2, the radii of the inner 
and outer cylinders, respectively, gives 

f«f(r) , 
Jn r 

where uo is the angular velocity of the outer cylin
der. Since the viscous torque M = 2irLrr2 = con
stant, where L is the length of the inner cup, we 
have — dr/dr = 277V and T2 = kri, where k = 
(Vi/^)2- The integral now becomes 

"0 = /2 I d r 
J krl T 

Differentiation of this equation with respect to n 
gives 

This expression contains the solution for the de
sired function. 

An additional differentiation and expansion of 
f(kri) = f(rj + h) in a Taylor's series, neglecting 
derivatives higher than the second, allows an ap-

I. Introduction 
It is well known that the primary (K1) and sec

ondary (K2) dissociation constants of a dibasic 
acid usually differ by more than a factor of four. 
If the ionization processes at the two acid groups 
were independent K1ZK2 would be exactly four, 
since both the un-ionized and doubly ionized species 
have symmetry numbers of two and the singly 
ionized intermediate has a symmetry number of 
unity. A theoretical explanation of the deviation 
of Ki/K2 from the value 4 was given by Bjerrum2 

in terms of the electrostatic forces operative within 
the molecule. Subsequent refinement of this 

Cl) Junior Fellow, Society of Fellows, Harvard University. 
(2) N. Bjerrum, Z. physik. Chem., 106, 219 (1923). 

proximate solution of f (n) from the two differential 
equations. If the difference in radii is a small 
fraction of the average radius, one obtains 

The general relation for relative viscosity is 

f( Inso lvent / 
-F1—x = n/vo 

If the solvent is Newtonian, then 

ft "I 2 t "0 
H n j s o l v e n t — -J _ L 

and 

(-°) (1 + *) 
V/Vo ~ ; — r TA—\ 

2k (»•) +a-k)(p\ 
\ n / s o l n V d n / ' o l n 

A plot of /3 versus V2 (voltage squared) for solvent 
and solution enables the terms to be evaluated. 
The term dcoo/drx is found at any point by graphical 
differentiation. 

I t is clear that the error committed in neglecting 
the non-equality of the two radii will be greater the 
more pronounced the curvature of the /3 versus V2 

plot, and in the direction of higher apparent rela
tive viscosities. In the present work, for solutions 
only slightly shear dependent, and for k = 0.823, 
the correction amounted to about 5%. 
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model by Kirkwood and Westheimer3 has shown 
that the concepts originally introduced are ade
quate to account quantitatively for the observa
tions. 

In recent years, interest in this problem has been 
reawakened from two diverse points of view. 
Fuoss and co-workers4-7 have extensively studied 
the properties of a class of compounds known as 
bolaform electrolytes. (It will be recalled that a 
bolaform electrolyte is one in which the charges are 

(3) J. G. Kirkwood and F. H. Westheimer, J. Chem. Phys., 6, 506 
(1938). 

(4) R. M. Fuoss and D. Edelson, T H I S JOURNAL, 73, 269 (1951). 
(5) R. M. Fuoss and V. H. Chu, ibid., 73, 949 (1951). 
(6) H. Eisenberg and R. M. Fuoss, ibid., 75, 2914 (1953). 
(7) O. V. Brody and R. M. Fuoss, J. Phys. Chem., 60, 156 (1956). 
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separated from one another by a chain of atoms.) 
I t is interesting to note t ha t these compounds ex
hibit ion-pair formation between the bolaform ion 
(bolion) and its counterions, even in solvents such 
as water . 4 - 7 Fur the r interest derives from the ob
servation tha t the counterions to a polyelectrolyte 
in solution are intimately associated with it. I t 
has been suggested t ha t this int imate association 
is due to the formation of ion-pairs a t specific 
groups along the polymer chain.8'9 Thus, the two 
types of ion-pair formation in bolaform electrolytes 
and in polyelectrolytes are postulated to be closely 
related. 

The original calculations of Bjerrum and of 
Kirkwood and Westheimer are not well adapted to 
the discussion of the mechanism of ion-pair forma
tion and its extension to more complex systems. 
In this brief communication we shall show tha t the 
Bjerrum relation (or its subsequent modification) 
may be derived easily in a manner which empha
sizes the physical processes leading to ion-pair for
mation and the subsequent deviation of KxJKi 
from the value four. The relation of the considera
tions presented here to the general problem of ion 
association in polyelectrolytes will be briefly dis
cussed. 

II. Some General Considerations 
We consider a volume v containing A7 bolions, 

with the total number of dissociable groups 2A7. 
Let the solution also contain, in addition to the 
counterions to the bolions, additional electrolyte 
consisting of L-} ions of charge gj where S L}q-} — 0. 
We shall deal mostly with 1:1 electrolytes, though 
no restriction will be made limiting the develop
ment to this case. Each of the 2N dissociable 
groups may be occupied by a charged group or a 
bolion-counterion pair. We shall assume, as im
plied, t ha t the sites a t which ion-pair formation 
occurs are the charged groups. 

I t is convenient to divide the free energy of the 
solution into three parts . The first portion, Fi, is 
the electrostatic free energy arising from the inter
actions between charged groups on the same 
bolion. The remainder of the electrical free energy, 
F2, results from the interaction between all charged 
species in solution, regarding each as a structure
less particle. Finally, the last portion of the free 
energy, F3, is the chemical free energy associated 
with the state of ion-pair formation and is com
puted from a reference s tate in which the bolion is 
in its completely ion-paired form. This choice of 
reference s tate emphasizes the calculation of the 
dissociation constant rather than the association 
constant. Obviously the choice of the completely 
dissociated s ta te would have been equally suitable. 
With the convention adopted above, and letting a 
be the degree of dissociation of the bolion, we note 
tha t the total free energy of the solution may be 
writ ten 

F = F1M + F2(Ia1]) + F1(C1) (1) 

with a; the activity of species i. Of the contri
butions to F2, we may distinguish between F21 

which is the electrical free energy of the free coun
terions which may bind to a bolion and form ion 

(8) F. E. Harris and S. A. Rice, J. Phys. Chtm., 68,725,733 (1954). 
(9) S. A. Rice and F. E. Harris, J. Chan. Phys., 24, 326, 336 (1956). 

pairs and F22 which contains the remainder of free 
energy of interaction between all ions in the solu
tion t reated as structureless particles. T o com
pute Fi we shall regard ion-pairs as uncharged. 

By minimizing the free energy of the solution 
with respect to the degree of dissociation a t con
s tant external salt activity, the equilibrium coun-
terion activity may be obtained. Performing the 
indicated differentiation, one obtains 

(~l)! + 2N1Kr + 2.V(MV - M0B+C-) = 0 (2) 

where we have used the fact tha t the various 
contributions to the free energy may be written as 

Fi = Fi(a) 

F1 = F21 + F^ = 2.VaM0- + A'MBB + E Lm 

F3 = 2,Va(J1
0B+ — M 0 B-C-) 

X; JV1 dMi = 0 (3) 
i 

and where m is the chemical potential of species i. 
We use the notation ,UBB to refer to the chemical 
potential of the bolion and /J,B + to refer to the chem
ical potential of the group a t which ion pairs form. 
Use of the relations 

Mi = M°i + kT In di 
- kTlnK\ = M V + M V - M0B+C- (4) 

enables us to write, after substi tution of (4) into (2) 

(~) + 2NkT In flC- - 2NkT In K", = 0 (5) 

III. The Electrical Free Energy 
In this section we consider the calculation of the 

electrostatic free energy of the electrolyte solution 
under discussion. If a model is used which repre
sents the bolion as having two discrete charges and 
occupying a spherically symmetric region of space 
from which other bolions are partially excluded, bu t 
into which the small ions and counterions may 
penetrate, it is possible to solve the Poisson-
Boltzmann equation with only the Debye-Huckel 
approximations.10 T h a t is, the equation is lin
earized, and the potential of the bolion represented 
as spherically symmetric. Though this model 
makes the approximation of representing the mass 
distribution as continuous and spherically sym
metric, this is far less serious than would be the 
approximation of replacing the discrete charges by 
a homogeneous charge distribution. In dilute 
solution, where the average distance between ions 
is very large relative to the separation of the 
charges within one bolion, the approximation of 
spherical symmetry ought to be quite good. In 
fact, as the solution approaches the state of infinite 
dilution all effects due to the separation of the 
charges within the bolion must disappear and the 
properties of the solution become independent of 
both the sizes of the ions and their charge distri
butions. The model described above also accounts 
for the removal of counterions from the solution by 
the formation of ion pairs with bolions. As might 
have been anticipated, it is found tha t the screened 
coulomb potential is a valid first approximation 
to the potential of mean force between two charges 
in the solution. In general, due to the partial ex-

(10) F. E. Harris and S. A. Rice, in press. 
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elusion of other bolions from the region between 
the charges of any one bolion, the screening con
stant for the interaction of the fixed groups on the 
bolion differs from that in the bulk of the solution. 
This effect is very large for polyelectrolyte solutions 
where the region occupied by any one polyion con
tains a very large number of charges constrained 
by the polymer backbone to remain close together. 
However, due to the small number of charges on a 
bolion, and to the fact that the region between 
charges is, in reality, readily accessible to all the 
small ions and to most of the charge due to others of 
its kind, the difference in screening constants will 
be small. To a good approximation, we may there
fore neglect the difference and treat all charge-
charge interactions with one screening constant. 
These considerations enable us to write for the elec
trical free energy of the solution, the expression 

^ e lee — r, / J 

g2e~*!nj| 

2 NaQ2K _ 4Na2q2K 

3D 3D 
4 

where D' (which may differ from D) is the effective 
dielectric constant for the interaction of two groups 

on the same ion when separated by a distance |nj|. 
Note that, aside from the first term representing 
the self energy of the bolions, the expression for the 
electrostatic free energy is exactly that which might 
have been deduced from the Debye-Hiickel theory 
of ordinary electrolytes. Thus the second term in 
eq. 6 is the electrostatic free energy of the added 
electrolyte, the third is that of the counterions, and 
the last is due to the bolions interacting as struc
tureless particles. The first term corresponds to 
Fi and the last three to Fi. Of the three terms com
prising Fi, the electrostatic free energy of the 
counterions may be also visualized as the elec
trical free energy change on building ion atmos
pheres about each of the charged groups on a bo
lion. We now turn to a further specification of the 
term F1. 

The Self Energy of the Bolions.—The sum in 
eq. 6 is to be carried out over all charged groups 
within the same molecule. In this section we shall 
develop a practical method of evaluating the sum 
and obtaining the degree of dissociation. We shall 
use the method of the Grand Partition Function 
since it is especially simple and elegant in the case 
under consideration. Moreover, the use of a 
Grand Partition Function11 enables us to calculate 
the degree of dissociation, the extent of charge 
fluctuation, etc., by simple differentiation. 

I t will be seen that due to the manner in which 
the free energy of the solution has been subdivided, 
the quantity to be calculated in this section is the 
electrical free energy due to the self interactions of 
N independent particles. Now consider each of 
the 2N ionizable groups in the solution, each of 
which may be in one of two states, ionized or ion 
paired. With each group let us associate a state 

(11) See, for example, G. S. Rushbrooke, "Introduction to Statistical 
Mechanics," Oxford University Press, New York, N. Y., 1949. 

variable m i = 1, 1', 2, 2', . . . , N, N', where we 
temporarily regard the ions as distinguishable. 
The i?j may have two values, 0 and 1, iji = 0 refer
ring to an ion paired group and »/i = 1 to an ionized 
group. The total electrostatic energy may there
fore be written 

N 

- E 
» = i fli'Ni 

N 

= E xmm' (7) 

which states that the total energy is the sum of the 
energy of all the bolions. Equation 7 is equivalent 
to the statement of the independence of the ions 
made above. We next introduce a semi-grand 
partition function S(X1T) defined by the relation 

S(X,r) = 2 e~E/kT \s,i+,i' (8) 
WO 

where X plays the role of an absolute activity whose 
value is determined by the total charge due to the 
bolions and where the summation is to be carried 
out over all possible values of the 77;. Introducing 
(7) into (8) we immediately obtain 

e-xW/kT\r,i+Vi'\X (9) E(x,D = / £ i i + i i ' V 

which may be evaluated by inspection, yielding 
the relation 

In E(X,r) = NIa (1 + 2X + \2e~x/kT) (10) 

In eq. 9 and 10 it has been assumed that the charge 
separation is the same in all bolions. When the 
number of atoms in the chain that separates the 
charges is small, this is a very good approximation. 
As the chain length between charges increases, the 
distribution of charge separations broadens. In 
that instance, it is easiest to assume that, for the 
purpose of calculating the electrostatic energy, all 
bolions have their charges separated by the average 
charge separation. This should be a quite ade
quate approximation for our purposes (see Appen
dix I.) 

Returning to the definition of E(X1T), it is 
possible to see that 

( § T E D T - 2 ^ <"> 
using the fact that the most probable value of 
S^i+^i' may be identified with 2aN, the total 
charge in solution residing on the bolions. The 
free energy Fi may now be expressed as 

F1 = - kT In S (X,D + 2aNkT In X (12) 

Standard procedures then enable us to obtain the 
relations 

X + We-x/kT 

1 + 2X + \2e~x/kT (13) 

f ^ - > U + 2X + XW* r ) -

a In X + ziTn 
\2e~x/kT 

2Nk \ da ) - -

2kT 1 + 2X + \h-x/kT 
X(I + \)e~x/kT 

(14) 

X + kTl + 2\e'x/kT + \H~x/kT 
(15) 

where Si{a) = — (SF1(O)ZbT) is the entropy 
arising from the distribution and interaction of the 
charges. From eq. 13 it can be seen that when the 
interaction between charges on the same molecule 
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tends to zero, then exp( — x/kt) tends to unity, and 
the degree of neutralization is given by 

* = ^ 1 (16) 

By substitution of (10) and (12) in (5) we thus find 
for the equilibrium condition (5) the relation 

In ac- + In X - In K°s = 0 (17) 

We can now calculate the equilibrium counterion 
activity or, if this is known, the equilibrium degree 
of dissociation, presuming only tha t we know the 
intrinsic dissociation constant Ks. In dilute solu
tion, to a sufficient approximation, the activity co
efficient term appearing in eq. 17 may be neglected 
relative to the contributions from the other terms. 
At equilibrium then (in very dilute solutions) 

The equilibrium constant for the secondary dis
sociation reaction may be writ ten 

„ _ K°B (2a — 1) + aCc" , , 
K> = C c 2K°B(1 - a) ( 1 9 ) 

where we have pu t Ki = 2K°B. Note tha t eq. 
19 is defined for the hypothetical ideal solution, or 
for a solution sufficiently dilute tha t activity co
efficients may be approximated by unity. Since 
K2 must obviously be independent of concentra
tion, it will have the same value in all real solu
tions, and the activity coefficients are just those 
factors which correct K2 to this constant value. 
We may now find by substitution of (18) into (13) 
and (13) into (19) t ha t 

iC2 = ^ e x p ( - ^ ) (20) 

which is the Bjerrum relation. The value of the 
dielectric constant for intercharge interaction is 
given by the Kirkwood-Westheimer theory, bu t 
the functional form (20) remains unaltered. 

IV. Discussion 
The obvious cause of ion-pair formation is the 

net increase in energy when a singly ionized bolion 
becomes doubly ionized. If this increase in energy 
is larger than the gain in translational free energy 
for the freed counterion, then ion-pairing is rela
tively favored. The extent of ion-pair formation 
depends on the concentration through the entropic 
par t of the free energy since the gain in translational 
energy per counterion is larger the more dilute the 
solution. 

More insight into the forces responsible for ion-
pair formation can be obtained from an examination 
of the entropy changes arising from the charge-
charge interactions within one bolion. A sche
matic plot of eq. 14 (Fig. 1) shows two peaks, cor
responding to the placement of charge on one site 
and then on the other. Note tha t this entropy is 
lower than t ha t for a bolion with no interaction be
tween the charges. The physical changes cor
responding to the entropy changes showm in Fig. 1 
may be visualized as follows. At small degrees of 
ionization there are predominantly uncharged and 
singly charged species in solution. Since these 
species differ, we may regard them as forming a mix
ture and there is a corresponding entropy of mix

ing. Alternatively, the entropy change may be 
regarded as arising from the number of ways in 
which 2 aN charges may be placed on a total of 
2N possible sites. In the case of a bolion with non-
interacting charges, the entropy of mixing passes 
through a single maximum as a increases, just as for 
an ideal solution. This is due to the fact t ha t it 
requires the same amount of energy to remove a 
charge for all values of a. In the presence of 
charge-charge interactions, this situation is modi
fied. As a increases more and more bolions be
come singly ionized. In contrast to the previous 
case, to form a doubly ionized bolion requires tha t 
the energy of the solution be markedly increased. 
The concentration of doubly ionized ions remains 
low therefore, and the increase in charge as a in
creases is due predominantly to an increasing con
centration of the singly ionized species. Now 
however, the solution contains a large number of 
singly ionized molecules and only a small number 
of doubly ionized or uncharged molecules. There 
is therefore a sharp decrease in the entropy of 
mixing as a approaches l/2 due to the increasing 
chemical homogeneity of the solution. When a 
exceeds 1Z2, there are once again a large number of 
energetically equivalent sites at which a charge can 
be placed. Doubly ionized species make their ap
pearance and mix with the rest of the solution and 
the entropy goes through a second maximum as a 
tends to unity. 

The difference between the entropy as a function 
of the degree of neutralization when there are 
charge-charge interactions and when there are no 
interactions indicates tha t a bolion with interac
tions will resist ionization more than one without 
interactions. The equilibrium constant for the 
secondary dissociation is accordingly lowered. If 
the bolaform electrolyte happens to be a dibasic 
acid, then as chemical neutralization is increased 
(by the addition of base, say) the bolion may bind 
the cation of the base to minimize its electrostatic 
free energy. In the case of the neutralization of a 
polyacid (or diprotic acid) in water, counterions are 
bound rather than protons because the proton 
concentration is dictated by the supplementary 
equilibrium governing the ion product of water. 
The proton concentration is therefore low. Only 
counterions are available to be bound to the polymer 
(or bolion) and thereby low7er its free energy. For a 
strong bolaform electrolyte, this binding appears 
as a smaller dissociation constant, K2. 

Thus, there is a direct relation the mechanism of 
ion-pair formation and of the lowering of K2. In 
the case of a polymer, the electrical interactions 
are very strong. As in the previous case, the 
macroion will resist having its charge built up by 
the expedient of binding counterions unti l the elec
trical free energy is minimized. The applicability 
of the site-bound ion-pair concept in treating the 
properties of bolaform electrolytes has been amply 
demonstrated, and the implication tha t the sites 
wThere ionization takes place and where ion-pair 
formation occurs are the same is also supported.4~7 

I t is interesting to speculate further on the rela
tionship between ion-pair formation as observed in 
solutions of bolaform electrolytes, and the nature 



Oct. 20, 1956 T H E BJERRUM RELATION AND THE FORMATION OF ION PAIRS 5251 

Fig. 1.—The entropic contribution to the electrostatic free 
energy, F1. 

of ion binding in solutions of polyelectrolytes. 
The ion-pair concept used in this paper differs in 
nature and purpose from that introduced by Bjer
rum to extend the Debye-Htickel theory to higher 
concentrations.12 The members of our ion pairs 
are much closer together than ion atmosphere di
mensions, and exclude a negligible proportion of 
the configurations ordinarily considered in the 
Debye-Hiickel theory. Introduction of this ion-
pairing need not be as arbitrary as it seems, for it 
describes, to first order, the free energy contribu
tions of the paired counterions and bolion charges. 
Application of the Poisson-Boltzmann equation to 
the modified system then enables the remainder of 
the electrostatic free energy to be calculated more 
accurately.10 In addition, as we shall subse
quently see, there is fragmentary evidence that 
the binding of counterions by polyelectrolytes may 
occur at specific sites. 

The elegant experiments of Wall,13-16 et al., 
leave little doubt that the counterions of a polyion 
are intimately associated with it. However, these 
experiments do not distinguish between counterions 
bound as ion-pairs and counterions that are merely 
trapped in the region where \e\///kT\ > 1. There are 
two pieces of evidence that tend to support the for
mer point of view. Howard and Jordan16 studied 
the sedimentation of polymethacrylic acid as. a 
function of the degree of neutralization of the poly
mer and the ionic strength of the medium. Kraut17 

has succeeded in interpreting their data on the 
basis that the sedimenting polyion has a net charge 
much smaller than the stoichiometric degree of 
neutralization. The net charge needed to fit the 
data is in quantitative agreement with the trans
ference and diffusion measurements of Wall, 
et al.u~lf> Since the rate with which the bound 
ions exchange with those in solution is large,u the 
experiments of Howard and Jordan largely elim-

(12) N. Bjerrum, KgI. Danske Vid. SeUk., Math.fys. Medd. I., No. 9 
(1926). 

(13) F. T. Wall and R. H. Doremus, T H I S JOURNAL, 76, 1557 
(1954). 

(14) F. T. Wall, J. Ondrejcin and M. Pikramenou, ibid., 73, 2821 
(1951). 

(15) J. Huizenga, P. Grieger and F. T. Wall, ibid., 72, 2636, 4228 
(1950). 

(16) G. Howard and D. C. Jordan, / . Polymer Set., 12, 209 (1954). 
(17) J. Kraut, ibid., 14, 222 (1954). 

inate the possibility that counterions external to 
the polymer coil are dragged along with it. A 
second set of experiments is far more clear cut. 
Strauss and co-workers18 found that it was possible 
to change the sign of the charge on polyvinyl-
pyridinium bromide and several related polyelec
trolytes if the bromide ion concentration was made 
sufficiently large. That is, the polyion starts out 
positive, then becomes negative, and moves to the 
opposite electrode as the bromide ion concentration 
increases. These results cannot be interpreted on 
the basis of electrostatic dragging of counterions in 
the region when \e\p/"kT\ > 1, since once the polyion 
had no net charge there would be no incentive for 
the counterions to further cluster in the vicinity of 
the polymer. It is probable, therefore, that the 
binding observed by Strauss and co-workers is oc
curring at specific sites. Moreover, these experi
ments indicate that there are other forces (i.e., 
ion-dipole) than those commonly considered which 
may play a significant role in determining the ther
modynamic and configurational properties of 
polyelectrolytes. 

Finally we note that an immediate implication 
of the proposed site binding is that the extent of 
ion-pair formation should be essentially independ
ent of the electric field strength applied, for ex
ample, in an electrophoresis experiment. In con
trast, if the ion association were due to electro
static dragging in the region where \e\f//kT\ > 1, the 
amount of ion pair formation should decrease con
tinuously with increasing electric field strength. 
It should be noted that these statements are meant 
to be applied only in the region of low field 
strengths. At very high field strengths, where a Wien 
effect may occur, both types of ion-binding will re
spond in the same way, i.e., decrease with increasing 
field strength. However, by the time fields suf
ficiently strong are reached, the amount of \e^/kT\ 
binding, assuming both exist in the absence of any 
field, should be negligibly small, and only the 
site bound counterions would give the Wien effect. 

Recent experiments by Wall19 have shown that 
the binding of sodium ion to polyacrylic acid is in
dependent of the applied field strength above a 
minimum value. The associated counterions may 
therefore be classed as loosely or strongly bound. 
The amount of non-specific loosely bound counter-
ion association is of the order of 8% of the total 
amount of binding when the degree of neutraliza
tion is approximately unity. Theoretical consid
erations previously cited10 indicate that in addi
tion to the site bound ions there will be a number 
of loosely bound ions within the volume occupied 
by the macroion. The loosely bound counterions 
found in Wall's experiments may be identified with 
these. It should be noted that all of Wall's ex
periments are carried out at low field strengths 
(0.1 to 1.5 volts per cm.), and therefore are in agree
ment with the implications of the proposed model. 

Bailey, Patterson and Fuoss20 have examined the 
(18) XJ. P. Strauss, N. Gershfeld and H. Spiera, T H I S JOURNAL, 76, 

5909 (1954). 
(19) F. T. Wall, H. Terayama and S. Techakumpuch, J. Polymer 

Set., 20, 477 (1956). 
(20) F. E. Bailey, A. Patterson and R. M. Fuoss, T H I S JOURNAL, 

74, 1845 (1952). 
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Wien effect in a strong polyelectrolyte, finding an 
increase in conductivity of the order of 1 3 % when 
the field was 10,000 volts per cm., with larger in
creases a t still larger field strengths. The order of 
magnitude of the observed Wien effect was com
parable to tha t observed in solution of tribenzyl-
ammonium picrate in a solvent of very low dielec
tric constant. Since the site bound ion pairs pro
posed ought to be similar to ion-pairs formed by 
salts in media of very low dielectric constant, the 
observed similarity of Wien effects is not unex
pected. Further , Bailey, et al., noted tha t though 
the Wien effect was reproducible, even when the 
pulses followed one another a t very short intervals, 
the total conductivity of the polyelectrolyte solu
tion did not reat tain its equilibrium value after the 
high voltage pulse for a period of time much longer 
than either the pulse length or the interval between 
pulses. If the Wien effect observed is due only to 
the site bound counterions, as suggested, then a 
possible explanation of this anomaly might be as 
follows. Due to the fact tha t the loosely bound 
counterions can be removed by very low fields, 
they will be much further from the polyion after a 
high voltage pulse than the site bound ions tha t 
have also been affected. There will therefore be a 
relatively longer relaxation time for the return of 
the loosely bound counterions than for the strongly 
bound counterions. T h a t is, loosely bound coun
terions will be found mostly outside the polyion 
and will have to diffuse to and into it, whereas 
strongly bound counterions, though in many cases 
removed from their charge sites, will remain largely 
within the domain occupied by the polyion. Since 
it is postulated t ha t the Wien effect derives only 
from the strongly bound counterions, whereas the 
low field conductivity depends upon the numbers 
of both kind, the relaxation t ime for the recovery 
of low field conductivity should be longer than tha t 
for the Wien effect. This is in the observed direc
tion. 

The experiments cited do not completely pre
clude all other explanations of ion association in 
polyelectrolytes, but they are in complete agree
ment with the simple hypothesis of site-bound 
pairs. 
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Appendix I 
The Effect of Chain Flexibility and the Calcula

tion of Charge Fluctuations.—Throughout the 
text we have assumed tha t the bolion is a rigid 
molecule, i.e., there is no change of configuration 
due to changes in charge s ta te or ionic strength. 
If such a change in configuration does occur, the 
free energy F\ consists of both the self-energy of 
the ion, as previously calculated, and the free 
energy change on expansion. Under these condi
tions, eq. 17 is modified to read 

(^t) - ° CA-D In Qc- + In X — In K°B + 

As an example, we shall calculate (d.Fexp/£>a) for a 
randomly coiled chain with allowance for the finite 
contour length of the molecule. The probability 

•S''-Hi) •f-) dh[ 4TThSdLk1 (A-2) 

density t ha t an uncharged chain will assume an 
end-to-end distance hi is given by the relation 
W(hi)dhi = const, exp 

( h'. 
where hm is the contour length of the molecule, h0 

its unperturbed length, and L - 1 ( x ) is the inverse 
Langevin function.21 We shall approximate L"1 

(x) by an expression employed by Kuhn and 
Grun,2 2 namely 

L~\x) = 3x (l + ~^) (A-3) 

If the bolion chain contains v charges on each end, 
the free energy7 of expansion will be2 3 

'' "t :)" 
hi 

3krin-~ + a'v'q' 
D 

• ( & ) 

"hT ' 

In 

leading to the result 

(^) -3*r[o, 4*L + 

1 

~hVj 

l/Am2 

(A-4) 

0 6 (h*Y ^** 
u-° \h0) i - {h/hmy 

;] dhi 
da + ~hT -1 ho J 

+ Kh1 \ £>hi (I + KhA 
V M2 ) 

(A-5) 
D \ h2 

If the free energy of expansion, eq. A-4, is minimized 
with respect to hi, the equilibrium end to end sep
aration becomes 

?2e-«*i (1 + Kh1)I (I)W i + 3DkTh1 

0.4 + 
0.6 -•r (A-6) 

1 - ( W W 2 

from which (d/z-i/da) may be evaluated readily. 
Numerical evaluation reveals t ha t the free energy 
of expansion is small relative to the other contri
butions to the free energy (see reference 8 for 
details of a similar calculation). 

As a final note, it is of interest to calculate the 
charge fluctuations. Differentiation of S(X1T) 
leads to the relations 

i dEcx, n 
i (X,r) d i n X 

1 d23(X,D 

= <Q> 

= <Q2> 

(A-7) 

S(X1T) d (In X)2 

from which one readily obtains for the fluctuations 
in charge 

<Q2> - « 2 > 2 
^ 2 = 

.Y 
= 4a ( l — a) 

(A-8) 
1 + 2X + X2e-x/«' 

where « 2 > and <Q2> are the average and average 
square total charges. Note t ha t this effect also 
exists in a bolion in which there are no inter
actions between the charges. A2 is zero only when 
a = 0, or a = 1, when fluctuations are obviously 
physically impossible. 
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(21) See P. J. Flory, "Principles of Polymer Chemistry," Cornell 
Univ. Press, Ithaca, N. Y., 1953. 

(22) W. Kuhn and F. Grun, Kolloid Z., 101, 248 (1942). 
(23) Note that in eq. A-4 the convention assumed is that Fi is com

puted with a charge separation of ho, and Fexp includes both the free 
energy of stretching and the change in electrical free energy due to 
expansion. An obviously equivalent convention would be to compute 
Fi for a charge separation hi, whereupon Fexp becomes only the elas
tic free energy. Also note that the development given is for a single 
molecule. 


